حل عددی معادلات دیفرانسیل جزئی کسری با استفاده از تقریب های تفاضلات متناهی فشرده
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده علوم ریاضی
- author مصطفی عباس زاده
- adviser اکبر محبی عباس سعادتمندی
- Number of pages: First 15 pages
- publication year 1391
abstract
هدف این پژوهش، بدست آوردن طرح های تفاضلات متناهی با مرتبه دقت بالا برای برخی از معادلات دیفرانسیل جزئی با مشتقات کسری است. به همین منظور ما در یک فصل جداگانه به بیان تعاریف وشماری از خواص مشتقات کسری پرداخته ایم. در این فصل سه نوع از عمگر های مشتق و انتگرال کسری معروف را بیان کرده ایم. سپس تعدادی از معادلات دیفرانسیل جزئی با مشتقات کسری مهم در مهندسی و فیزیک از جمله معادلات استوکس، پخش-وزش، زیر پخش، کلاین گردون و کتانئو مورد بررسی قرار گرفته اند. برای معادلات فوق، پس از یافتن تقریب های تفاضلات متناهی فشرده و اثبات حل پذیری طرح پیشنهاد شده، از روش های آنالیز فوریه و روش انرژی برای اثبات پایداری و همگرایی طرح های تفاضلی بهره جسته ایم. نتایج حاصل از به کارگیری روش های پیشنهاد شده، موید مرتبه دقت بالا و کارائی روش ها می باشد.
similar resources
حل عددی معادلات دیفرانسیل جزئی استاندارد و کسری با استفاده از روش تفاضل متناهی فشرده
در این پایان نامه با روش های تفاضل متناهی فشرده و انتگرال و مشتق کسری یک تابع آشنا می شویم. معادلات دیفرانسیل جزئی استاندارد گرما و هذلولوی مرتبه ی دوم را با روش های تفاضل متناهی فشرده حل می کنیم و سپس به حل معادلات دیفرانسیل جزئی کسری با روش های تفاضل متناهی فشرده می پردازیم. این معادلات شامل معادله واکنش زیر گرمای کسری و معادله موج - گرمای کسری است.
بررسی پایداری طرح تفاضلات متناهی غیر استاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی از مرتبه کسری
عملگر های مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبه دلخواه می باشد. معادله دیفرانسیل با مشتقات نسبی) (pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادله دیفرانسیل با مشتقات نسبی کسری ( (fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای بدست آوردن یک طرح عددی، مشتقات...
full textساختن روشهای تفاضلات متناهی مبتنی بر توابع پایه شعاعی و استفاده از آنها برای حل معادلات دیفرانسیل با هندسه دلخواه
In this paper we, obtain the weight of radial basis finite difference formula for some differential operators. These weights are used to obtain the local truncation error in powers of the inter-node distance and the shape parameter of radial basis functions. We show that for each difference formula, there is a value of the shape parameter for which RBF-FD formulas are more accurate than the cor...
full textبررسی پایداری طرح تفاضلات متناهی غیراستاندارد برای حل معادلات دیفرانسیل با مشتقات نسبی خطی از مرتبه کسری
عمل گرهای مشتق و انتگرال کسری مفهوم جدیدی از مشتق و انتگرال از مرتبۀ دل خواه است. معادلۀ دیفرانسیل با مشتقات نسبی )[1](pde که مشتقات موجود در آن بتوانند از مرتبه کسری باشند معادلۀ دیفرانسیل با مشتقات نسبی کسری ([2](fpde گفته می شود. امروزه این معادلات به دلیل کاربرد زیاد توجه ویژه ای را به خود معطوف داشته اند. در این مقاله حالت نسبتاً کلی از یک fpde مطرح می شود، برای به دست آوردن طرحی عددی، مشتق...
full textآنالیز روش های تفاضلات متناهی در حل معادلات دیفرانسیل با مشتقات جزئی کسری مکانی
هدف این پژوهش، بررسی پایداری و همگرایی طرح های تفاضلات متناهی برای برخی از معادلات دیفرانسیل جزئی با مشتقات کسری است. به همین منظور ما در یک فصل جداگانه به بیان تعاریف و شماری از خواص مشتقات کسری پرداخته ایم. در این فصل چهار نوع از عمگرهای مشتق و انتگرال کسری معروف را بیان کرده ایم. سپس تعدادی از معادلات دیفرانسیل جزئی با مشتقات کسری مهم در مهندسی و فیزیک از جمله معادلات پخش-وزش، پخش و موج مورد...
15 صفحه اولMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده علوم ریاضی
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023